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Chapter-1 

Electromagnetic Radiation 
1.  Introduction 
      Antennas are structures designed for radiating electromagnetic energy 

effectively in a prescribed manner. Without an efficient antenna, electromagnetic 

energy would be localized, and wireless transmission of information over long 

distances would be impossible. 

     An antenna may be a single straight wire or a conducting loop excited by a 

voltage source, an aperture at the end of a waveguide, or a complex array of these 

properly arranged radiating elements. Reflectors and lenses may be used to 

accentuate certain radiation characteristics. Among radiation characteristics of 

importance are field pattern, directivity, impedance, and bandwidth. These 

parameters will be examined when particular antenna types are studied.  

     To study electromagnetic radiation, we must call upon our knowledge of Max-

well's equations and relate electric and magnetic fields to time-varying charge and 

current distributions. A primary difficulty of this task is that the charge and current 

distributions on antenna structures resulting from given excitations are generally 

unknown and very difficult to determine. In fact, the geometrically simple case of a 

straight conducting wire (linear antenna) excited by a voltage source in the middle 

has been a subject of extensive research for many years, and the exact charge and 

current distributions on a wire of a finite radius are extremely complicated even 

when the wire is assumed to be perfectly conducting. Fortunately, the radiation 

field of such an antenna is relatively insensitive to slight deviations in the current 

distribution, and a physically plausible approximate current on the wire yields 
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useful results for nearly all practical purposes. We will examine the radiation 

properties of linear antennas with assumed currents. 

     By combining Maxwell's equations we can derive nonhomogeneous wave equa-

tions in E and in H. However, these equations tend to involve the charge and 

current densities in a complicated way. It is generally simpler to solve for the 

auxiliary potential functions A and V first. Using A and V in the following two 

equations:  

                                                                                            

 

we can determine H and E. For harmonic time variation in a simple medium we 

have: 

 

 
The potential functions A and V are themselves solutions of nonhomogeneous 

wave equations. For harmonic time dependence the phasor retarded potentials are,  

 

 
where   is the wavenumber.  

Of course, A and V are related by the Lorentz condition for potentials: 

 
 

…. (1) 

 
…. (2) 

 

…. (3) 

 

…. (4) 
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 and  J and ρ are  related by the equation of continuity: 

 

or, 

 
Hence there is no need for evaluating the integrals in both Eqs. (3) and (4). As a 

matter of fact, since E and H are related by the following equation: 

 

Thus, 

 
We follow three steps in the determination of electromagnetic fields from a current 

distribution:  

(1) determine A from J using Eq. (3);  

(2) find H from A using Eq. (1);  

(3) find E from H using Eq. (6).  

 

Note that only Step 1 requires integration and that Steps 2 and 3 involve only 

straightforward differentiation. This is the procedure we will use in finding the 

radiation pattern of antennas. 

     We will first study the radiation fields and characteristic properties of an ele-

mental electric dipole and of a small current loop (or magnetic dipole). We then 

consider finite-length thin linear antennas, of which the half-wavelength dipole is 

an important special case. The radiation characteristics of a linear antenna are 

largely determined by its length and the manner in which it is excited. To obtain 

…. (5) 

 

…. (6) 
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more directivity and other desirable properties, a number of such antennas may be 

arranged together to form an antenna array. The geometrical configuration, the 

spacings between the array elements, as well as the relative amplitudes and phases 

of the excitations in the elements all affect the field pattern of the array. Some 

basic properties of simple arrays will be considered. 

     When an antenna is used as a receiving device, its function is to collect energy 

from an incoming electromagnetic wave and deliver it to a receiver. Any antenna 

that is useful for radiation is also useful for reception. We will use the reciprocity 

theorem to show that the pattern, directivity, input impedance, effective height, 

and effective aperture of an antenna are the same for transmitting as for receiving.  

 

2- Radiation Fields of Elemental Dipoles (Hertzian Dipole) 
     In this section we study the radiation fields of the simplest types of all radiating 

systems-namely, elemental oscillating electric and magnetic dipoles. We will find 

that the field solutions for electric and magnetic dipoles are duals of each other. As 

a consequence, the radiation properties of one can be deduced from those of the 

other without recalculation. 

 

2.1 The Elemental Electric Dipole 

     Consider the elemental oscillating electric dipole (in free space), as shown in 

Fig.1, which consists of a short conducting wire of length dl terminated in two 

small conductive spheres or disks (capacitive loading). We assume the current in 

the wire to be uniform and to vary sinusoidally with time: 

   
…. (7) 
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Since the current vanishes at the ends of the wire, charge must be deposited there. 

The relation between the charge and the current is 

 
In phasor notation,  

 
Thus, we have 

 

 
 

 

Fig.1: A Hertzian dipole 

 

 

…. (8) 

 

…. (9) 

 

…. (10) 
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where, for the indicated current direction in Fig.1, the positive sign is for the 

charge on the upper end and the negative sign for the charge on the lower end. The 

pair of equal and opposite charges separated by a short distance effectively forms 

an electric dipole with a vector phasor electric moment 

  
Such an oscillating dipole is called a Hertzian dipole. 

     To determine the electromagnetic field of a Hertzian dipole, we follow the three 

steps outlined in Section-1. The phasor representation of the retarded vector 

potential is, from Eq. (3), 

   
            

where  Since 

 
the spherical components of  

 
are given by: 

 

 

 

…. (11) 

 

…. (12) 

 

…. (13) 

 

…. (14a) 

 

…. (14b) 

 
…. (14c) 
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From the geometry of Fig.1 we expect no variation with respect to the coordinate 

ϕ. By using cross product in spherical coordinate, we have: 

  
The electric field intensity can be obtained from Eq. (6): 

 
 

which gives 

 
 

        

             
 

where  

     Equations (15) and (16) constitute the electromagnetic field of a Hertzian 

dipole. Note that in deriving these expressions we used only the current in the 

dipole to find the vector potential A; the charges at the ends of the dipole did not 

enter into the calculations. We could, however, take an alternative approach by 

…. (15) 

 

…. (16) 

 

…. (16a) 

 

…. (16b) 

 …. (16c) 
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finding both A from Id l ,  as in Eq. (12), and the scalar potential V  from the pair of 

equal and opposite charges using Eq. (4). The electric field intensity could then be 

determined from Eq. (2), instead of from Eq. (6). The result would be exactly the 

same as that obtained above. 

      

• Near Field: In the region near to the Hertzian dipole (in the near zone), 

βR=2πR/λ<<1, the leading term in Eq. (15) is 

                                   
where we have approximated the factor   by 

unity. Equation (17) is exactly what would be obtained for the magnetic field 

intensity due to a current element Idl by applying the Biot-Savart law in 

magnetostatics. 

The leading near-zone terms for the electric field intensity are, from Eqs. (16a) and 

(16b), 

          
and 

 
where the phasor relations (10) and (11) have been used. These expressions are 

identical to those of the electric field intensity due to an elemental electric dipole 

of a moment  p in the z-direction, obtained by an application of the laws of 

…. (17) 

 

…. (18a) 

 

…. (18b) 
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electrostatics. The near-zone fields of an oscillating time-varying dipole are then 

quasi-static fields. 

• Far Field: The region where    is the far zone. The 

far-zone leading terms in Eqs. (15) and (16) are: 

 

 
                                                                                                                       

                   
     Several important observations can be made on these far-zone fields. First, Eθ 

and Hϕ are in space quadrature and in time phase. Second, their ratio Eθ/Hϕ=η0 is a 

constant equal to the intrinsic impedance of the medium (which is, in the present 

case, free space). The far-zone fields, then, have the same properties as those of a 

plane wave. This is not unexpected, since at very large distances from the dipole a 

spherical wavefront closely resembles a plane wavefront. 

     A third observation from Eqs. (19a,b) is that the magnitude of the far-zone 

fields varies inversely with the distance from the source. The phase of both Eθ  and 

Hϕ is a periodic function of R with a period that is the wavelength: 

 
Note that the far-zone condition βR >>1 translates into R>>λ/2π; hence one has to 

be farther away from the dipole at lower frequencies in order to be in the far zone. 

(Other characteristics of far-zone fields will be discussed in Section-3). 

 

…. (19a) 

 

…. (19b) 

 

…. (20) 
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2.2 The Elemental Magnetic Dipole 

     Let us now consider a small filamentary loop of radius b carrying a uniform 

time- harmonic current i(t) = I cosωt  around its circumference, as shown in Fig.2. 

This is an elemental magnetic dipole with a vector phasor magnetic moment 

  

 
Fig.2: A magnetic dipole 

     

     To determine the electromagnetic field, we first find the vector potential. The 

procedure is as follows: 

  
The integral in Eq.(22) is relatively difficult to carry out because R1  changes with 

the location of dl’ on the loop. For a small loop, the exponential factor in the 

numerator can be written as:  

…. (21) 

 

…. (22) 
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Substitution of Eq.(23) in Eq.(22) yields approximately: 

 
The second integral in Eq.(24) obviously vanishes. We have: 

 
The electric and magnetic field intensities can be determined by straightforward 

differentiation using Eq.(6) and (1) respectively: 

 

 

 
Comparison of Eqs. (26a,b,c) with Eqs. (15) and (16a,b) reveals immediately the 

dual nature of the electromagnetic fields of electric and magnetic dipoles. 

      Let (Ee, He) denote the electric and magnetic fields of the electric dipole and 

(Em, Hm) the electric and magnetic fields of the magnetic dipole. We have 

  
and 

  

…. (23) 

 

…. (24) 

 

…. (25) 

 

…. (26a) 

 

…. (26b) 

 

…. (26c) 

 

…. (27) 

 

…. (28) 
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if the electric and magnetic dipole moments are related as follows: 

  
where  Equations (27) and (28) are results expected from the principle of duality. 

Thus Hertzian electric dipole and elemental 

magnetic dipole are dual devices, and their electromagnetic fields are dual 

solutions of source-free Maxwell's equations. As a consequence of this duality, the 

discussions about the nature of the near and far fields of an electric dipole apply to 

the dual quantities of a magnetic dipole. In particular, the far-zone (βR >>1) fields 

of a magnetic dipole are 

       

       
We can see that the far-field intensities vary inversely as R and their ratio Eϕ/Hθ 

equals the intrinsic impedance η0 of free space. 

      Examination of the far-field Eθ  in Eq.(19b) of the electric dipole and in Eq. 

(30a) of the magnetic dipole reveals that they have the same pattern function |sinθ| 

and are in both space and time quadrature. Thus it is possible to combine electric 

and magnetic dipoles to form an antenna that produces circular polarization. 
 

 

 

 

 

…. (29) 

 

…. (30a) 

 

…. (30b) 
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